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Conductance Oscillations in Squashed Carbon Nanotubes 
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A combination of molecular dynamics and electrical conductance calculations are used to probe the 
electromechanical properties of squashed metallic carbon nanotubes. We find that the conductance 
and bandgap of armchair nanotubes show oscillations upon squashing. The physical origin of these 
oscillations is attributed to interaction of carbon atoms with a fourth neighbor. Squashing of 
armchair and zigzag nanotubes ultimately leads to metallic behavior. 
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Experiments probing the electromechanical response 
of carbon nanotubes have been the most interesting re- 
cent work in nanotubes. '-' These experiments involve 
nanotubes interacting electrically with contacts and me- 
chanically with an atomic force microscope (AFM) tip. 
Apart from the fundamental physics governing the elec- 
tromechanical response, these experimmts sre also im- 
portant t o  the future use of carbon nanotubes in actua- 
tors and nano electromechanical devices6 There are two 
categories of experiments exploring the electromechanical 
properties: one which involves and the second which does 
not involve, a change in the nanotube length7 The first 
experiment in category one involved deforming a nan- 
otube suspended in a silicon dioxide trench by an atomic 
force microscope (AFM) tip.* The electrical conductance 
was found to decrease by two orders of magnitude upon 
modest deformation. Subsequent modeline showed that 
the primary reason for conductance change is a strain in- 
duced bandgap due to  bond stretching in the axial direc- 
tion. More recent experiments have also observed a chi- 
rality dependent change in bandgap upon axial straiq3s4 
consistent with earlier theoretical w ~ r k . ~ . ' ~  

The second class of experiments on electromechanical 
response involve the squashing of nanotubes lying on a 
hard substrate's5. We believe that in these experiments, 
the physics is determined by curvature effects and the 
interaction of carbon atoms with a fourth neighbor. The 
change in nanotube length, if any, will only play a sec- 
ondary role. Theoretical work has shown that squashing 
of metallic zigzag nanotubes leads to  the closing of the 
curvature induced gap"-14. On the other hand, it has 
been predicted that while armchair nanotubes develop 
a bandgap upon ~quashing '~- '~ ,  chiral nanotubes are in- 
sensitive to  squashing because of a large wave vector mis- 
match of isoenergetic s t a t e ~ . ' ~  

The purpose of this letter is to  investigate the elec- 
tromechanical properties of squashed single wall armchair 
and zigzag nanotubes lying on a substrate. We present a 
unified picture of the underlying physics from the unde- 
formed to  the well deformed cases. Our central result is 
that novel bandgap and conductance oscillations emerge 
with squashing. The bandgap oscillations are discussed 
in term of the following factors: (A) curvature effects 
within the three nearest neighbor graphene frame work, 
(B) interaction with a fourth neighbor between atoms at 
the edge of the nanotube (Fig. 1) and ( C )  interaction 

with a fourth neighbor between atoms at  the top and 
bottom of the nanotube (Fig. 1). The transition region 
between regions (A), (B) and ( C )  leads to  oscillations 
in the bandgap of armchair nanotubes. 

We consider a (12,O) zigzag and (6,6) armchair metal- 
lic carbon nanotube, which have 48 and 24 atoms per 
unit cell respectively. Their diameters of 9.4 A (12,O) 
and 8.14 A (6,6) are similar. To model the squashing of 
nanotubes we note that typical AFMs have a tip diam- 
eter that is larger than 25 nm, and that the diameter of 
single wall nanotubes is typically 2 nm or smaller. The 
carbon nanotubes were squashed using graphene sheets 
of a much larger dimension to  mimic deformation with 
a large diameter AFM tip. So as to  focus on the hter-  
action between nanotube atoms, we kept the atoms in 
the graphene layers fixed. Molecular dynamics simula- 
tions were performed using the density functional theory 
based tight binding (DFTB) method." The distance be- 
tween the graphene sheets varied from approximately 18 
A to  6 a, with increasing deformation. Zigzag nanotubes 
have three configurations (Fig. 1,a-c). First the nan- 
otube is symmetric, with top atoms facing bottom atoms 
(Fig. 1,a). At higher deformation, top atoms perform 
a 'tank-treading' motion to face hollow sites on the bot- 
tom, which corresponds to the second configuration (Fig. 
1,b). Finally, the tube suffers a shear deformation along 
the axis, which tilts the planes of nanotube rings, and 
transits to the third configuration (Fig. 1,c). The arm- 
chair nanotube shows a slow gradual 'tank-treading' mc- 
tion of top atoms, which tend to  face hollow sites on the 
bottom (Fig. 1,d-f). The bandgap and conductance of 
these deformed nanotubes are calculated using the same 
self-consistent non orthogonal tight binding parameteri- 
zation of reference [18]. 

We will first discuss the bandgap change in the case 
of metallic zigzag nanotubes. The bandgap as a function 
of the distance between the top and bottom of the nan- 
otube (d) is shown in Fig. 2. Undeformed (12,O) zigzag 
carbon nanotubes have a curvature induced bandgap (- 
200 meV).'l This bandgap arises due to  the curvature 
effect which makes hopping along the axial and angu- 
lar bonds inequivalent. Upon squashing, the axial and 
angular bonds become equivalent a t  the top and bot- 
tom of the nanotube but become more inequivalent a t  
the edges. The net effect is to further decrease the cur- 
vature induced bandgap. With further deformation, a t  
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d < 6p1, the bandgap decreases more rapidly. Finally at  
d N 5p1 the bandgap closes and the zigzag nanotube be- 
comes metallic, which agrees with the results ,Of references 
12 and 14. The physics in the regime, d > 6A can be un- 
derstood within the three interacting neighbor picture of 
carbon nanotubes2' (factor A). We find that the bandgap 
decrease and closure at  d < 6w is because atoms at  the 
edge interact with a fourth neighbor (factor B). Further, 
we find that the interaction with the fourth neighbor al- 
ways lie in pairs: for every interaction of atoms belong- 
ing to the same graphene sublattice A (type AA) there 
is ail iiikaciioii of type DE, Setiveen stoms be!onging 
to the sublattice B ,  with the same strength. This is due 
to the fact that under the mirror symmetry operation 
of the zigzag nanotubes around a plane perpendicular to  
the axis, atoms A will be transformed into atoms B and 
vice versa. These interactions always couple atoms in the 
same ring and are the strongest at the edges although the 
calcuiation inciuded c9upiing between ali atoms within a 
cut-off radius of 4.2 A. The bandgap closing at d - 5A 
is now explained using a degenerate perturbation theory 
involving only the crossing subbands in the n orbital pic- 
ture. The two pairs of crossing subbands are represented 
by ( X I ,  T ; )  and (7~2,n4), where nt and n: correspond to 
the bonding and antibonding states respectively. The in- 
teraction between the crossing subbands can be written 
as, 

where i, j E 1,2. There are two important features in the 
relative values of the terms in Eqs. ( 1 )  and (2). First, 
the distance between atoms A and B is larger than that 
between two atoms, both of type A or type B. So, we can 
neglect interactions involving AB.  Second, within the x 
orbital wave functions, 

where ~ A A  and l g g  are the distances between AA and 
BB. Using Eqs. (1) - (4), the perturbation Hamiltonian 
arising from the four degenerate levels a t  k=O can then 
be written as, 

where the four rows/columns numbered 1 ,  2, 3 and 4 
correspond to TI, Ti,  n2 and r; respectively. The main 
feature of H in Eq. (5) is that the bonding states of one 
pair do not interact with the antibonding states of the 
other pair of crossing subbands. The main non zero in- 
teraction is between the n1 and n2 bands, and between 
the n; and n; bands. As a result, H lifts the degeneracy 

only between the two pairs of crossing subbands, shift- 
ing them by energy (V,,,l f IV,,,, I), without perturbing 
the bonding-antibonding states within each pair. Thus a 
bonding state of one pair crosses the antibonding state 
of the other pair without a bandgap and the crossing 
point corresponds to the new Fermi energy. This sim- 
ple n-orbital analysis is in excellent agreement with the 
four orbital results, as shown in Fig. 3 (a). Note, that  
the curvature induced splitting between n and n* bands 
of each pair is still present in the bandstructure, but no 
longer affects the conductance of the tube. 

Fermi energy can be larger than two at  high deformation. 
As a result, the conductance can be larger than 4e2/h, 
which is the theoretical maximum for the undeformed 
nanotube. This region cannot be understood within the 
n orbital picture and is a result of our four orbital calcu- 
lations. A typical band structure in this region is shown 
in Fig. 3(b). 

We will now discuss our results for the bandgap 
and conductance change of armchair nanotubes. The 
bandgap of armchair nanotubes is nearly zero for d > 6A 
and begins to increase for d < SA. This is the approxi- 
mate d at  which the bandgap of a zigzag nanotube with 
a similar diameter closes. Note that while the effect of 
curvature with only three nearest neighbors induces a 
bandgap change in zigzag nanotubes, it causes very little 
change in the case of armchair nanotubes. Further, while 
interaction with a fourth neighbor yhich become impor- 
tant as d becomes smaller than 6 A causes the bandgap 
to close for zigzag nanotubes, it causes an opening of the 
bandgap in armchair nanotubes. 

The prevalence or cancellation of certain types of 
fourth neighbor interaction is the underlying physics of 
the dramatic bandgap oscillations shown in Fig. 4. The 
Hamiltonian for the interaction between the x and n* 
crossing subbands of an armchair nanotube at IC = zkg 

T'I- cj ;m-n+ n C  D',. I i6. 3 "+...." IJA vllLl that numbcr cf m d c s  zt tEc 

is,21-23 

where again V,, and V,,. are defined as in Eqs. (1) 
and (a).- From Eq. (6), the crossing subband energies 
are (V,, + V,*,* f J(V,, - V,*,*)2 + 41V,,* 12)/2, cen- 
tered at  V,, and split by 21V,,-I. We have assumed 
V,, - V,*,=, which holds in the case of A A  and B B  
interaction. Upon squashing of an  undeformed armchair 
nanotube, we find that 6 AA and 6 B B  interactions be- 
come non negligible per unit cell, at the edges. These 
interactions couple atoms in neighboring rings and are 
shown in Fig. 1 (d). Zgg is slightly shorter than !*A, and 
so the bandgap increases as d decreases from 6A (factor 
B). lgg and ~ A A  become comparable upon further defor- 
mation. This causes the bandgap to  decrease and reach 
a minimum around d N 2.71A, when VA! = -V&?. 
Again, note that while our arguments here use only the 
strongest interactions, our tight binding calculations con- 
sider all interaction between atoms that are closer than 
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4.2.k At further deformation, d < 2.71A, I A A  becomes 
shorter than lgg (Fig. 1 (e)) which leads to  the second 
bandgap increase in Fig. 4 (factor B). 

For d < 2.5A, the deformation is high enough to  couple 
top-bottom atoms of the same ring (factor C )  in addition 
to the coupling of atoms at the edges as shown in Fig. 
l(e>. By analysing the matrix elements, one can show 
that V,$!(sarne ring) = -2V,e(neighboring rings). The 
interactions at the edges and topbottom contribute with 
opposite signs, which leads to a {ecrease and the s?cond 
minimum of bandgap at d - 2.5A. When d < 2.5A, the 
interaction betureen topbottom atoms d_nminates over 
the edge atoms, leading to  the third increase in bandgap. 

The evolution of the band structure of the armchair 
nanotube upon deformation is shown in Fig. 5. Note 
that the deformation causes a shift of the crossing sub- 
bands and a monotonic decrease in Fermi energy. When 
the coupling between topbottom atoms is strong enough, 
at d < 2.32>, the bandgap becomes indirect with the 
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valence band corresponding to a non crossing subband 
while the conduction band is still primarily n*. Upon 
further deformation the Fermi energy passes through the 
non crossing subband, which makes the nanotube metal- 
lic. This mixing of crossing and noncrossing subbands 
is similar to  the zigzag case and dominates at all higher 
deformations until the tube breaks. 

In conclusion, we find that interaction with a fourth 
neighbor at the edges (and not top-bottom) of armchair 
nanotubes causes a bandgap to open. Interplay between 
various fourth neighbor interactions at both the edges 
and topbottom c a ~ s p s  the bandgap to osci!!&e +th de- 
formation. These oscillation are large enough (> 100 
meV) to be experimentally observable. The picture de- 
veloped t o  explain the oscillatory bandgap of armchair 
nanotube also serves well in explaining the closure of 
bandgap in zigzag nanotubes, which arises due to  interac- 
tions with fourth neighbors at the edges of the deformed 
nanotube. 

S. Paulson et al., Appl. Phys. Lett. 75, 2936 (1999) 

E. D. Minot, Y. Yaish, V. Sazonova, J-Y. Park, M. Brink 
and P. L. McEuen, Phys. Rev. Lett. 90, 156401 (2003); 
J. Cao, Q. Wang and H. Dai, Phys. Rev. Lett. 90, 157601 
(2003) 
C. Gomez-Navarro, P. J. DePablo and J. Gomez-Herrero, 
Accepted in Adv. Mater. (2004) 
Yu. N. Gatstein, A. A. Zakhidov, and R. H. Baughman, 
Phys. Rev. Lett. 89, 45503 (2002); Phys. Rev. B 68, 
115415 (2003) 
Experiments involving torsional strain of the nanotube re- 
main largely unexplored. 
A. Maiti, A. Svizhenko, and M. P. Anantram, Phys. Rev. 
Lett. 88, 126805 (2002) 
R. Heyd, A. Charlier, E. McRae, Phys. Rev. B 55, 6820 
(1997). 

la L. Yang, M. P. Anantram, J. Han, J. P. Lu, Phys. Rev. B 
60, 13874 (1999) 
P. Delaney, H. J. Choi, J. Ihm, S. G. Louie and M. Cohen, 
Nature, 391, 466 (1998) 

'' C. J. Park, Y. H. Kim, and K. J. Chang, Phys. Rev. B 60, 
10656 (1999) 

l3 P. E. Lammert, P. Zhang and V. H. Crespi, Phys. Rev. 
Lett. 84, 2453 (2000) 

l4 0. Gulseren, T. Yildirim, S. Ciraci, and C- Kilic, Phys. 
Rev. B 65, 155410 (2002) 

l5 J.-Q. Lu, J. Wu, W. Dum, F. Liu, B.-F. Zhu and B.-L. 
Gu, Phys. Rev. Lett. 90, 156601 (2003) 

l6 D. Porezag, T. F'rauenheim, T. Kohler, G. Seifert, and R. 
Kaschner, Phys. Rev. B 51, 12947 (1995); G. Seifert, D. 
Porezag, and T. Frauenheim, Int. J. Quantum Chemistry, 
58, 185 (1996). 
G. Seifert, T. Kohler, and T. Frauenheim, Appl. Phys. 
Lett. 77, 1313, (2000); X. Y. Zhu, S. M. Lee, Y. H. Lee, 
and T. Frauenheim, Phys. Rev. Lett. 85, 2757, (2000) 
D. Porezag, T. F'rauenheim, T. Kohler, G. Seifert, and R. 
Kaschner, Phys. Rev. B 51, 12947 (1995); G. Seifert, D. 
Porezag, and T. Frauenheim, Int. J. Quantum Chemistry 

' T. W. Tombler et al., Nature 405, 769 (2000) 
58, 185 (1996). 

l9 M. Elstner, D. Porezag, G. Jungnickel, J.. Elsner, M. 
Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Phys. 
Rev. B 58, 7260 (1998). 

21 N. Hamada, S. I. Sawada and A. 0shiyama;Ph'ys. Rev. 
Lett. 68, 1579 (1992); 

22 J. W. Mintmire, B. I. Dunlap and C. T. White, Phys. Rev. 
Lett. 68, 631 (1992); 

23 R. Saito, M. Fbjita, G. Dresselhaus and M. S. Dresselhaus, 
Appl. Phys. Lett. 60, 2204 (1992) 



. 

4 

FIG. 1: Optimized zigzag (a-c) and armchair ($-f) nanotubes. 
Graphene layers (not shown) are typically 2.5 A above/below 
the nanotube. Circles and squares denote atoms in different 
rings. (a),(d) At small deformations, atoms at the edges inter- 
act. The bandgap becomes zero when L A A  = ~ B B .  (b),(e) At 
medium deformations, interactions between top and bottom 
atoms compete with edge interactions. (c),(f) Top-bottom 
interactions prevail at high deformations. 

FIG. 2: Bandgap of the (12,O) nanotubes as a function of 
deformation. The curvature induced bandgap decreases due 
to flattening of top and bottom of the nanotube. The inter- 
action with a fourth-neighbor leads to the bandgap decrease 
and closure at d < 5A. The inset shows the conductance as a 
function of deformation. At high deformations, conductance 
increases due to new conducting modes near the Fermi energy. 

FIG. 3: The sp3 TB bandstructure of a deformed (12,O) nan- 
otube. (a) The gap closes because the interaction shifts one 
pair of T - R' subbands with respect to the other. The Fermi 
energy is at the crossing point of 7r1 and ~ 2 ' .  (b) Very high 
deformation creates new conducting modes in the vicinity of 
the Fermi energy. 

FIG. 4: Bandgap of the (6 ,6)  nanotubes as a function of 
deformation. The interaction with a fourth neighbor opens 
a bandgap at  d N 6A. The competition between AA and 
BB interactions at the.edge results in the first Yinimum at 
d N 2.71A. The second minimum at d N 2.5A is due to 
the cancellation of edge and top-bottom interactions. The 
final closure of the gap is because of the presence of noncross- 
ing subbands. In the inset, the conductance as a function 
of deformation shows pronounced oscillations. At higher de- 
formations the number of conducting modes is higher than 
2. 

FIG. 5: The evolution of the sp3 TB bandstructure of de- 
formed (6,6) nanotube. (a) The bandgap opens due to to one 
of the interactions of the edge atoms. (b) The first closure 
of the gap due to interplay of edge interactions. While the 
contributions to V,,* cancel out, resuiting in zero gap, V,, 
and V,*,* add up, resulting in a constant shift of the band 
center / Fermi energy. (c) The cancellation of edge and top- 
bottom AA interactions. (d) The final closure of the gap due 
to the overlap of crossing and noncrossing subbands. Note 
the indirect character of the bandgap. 
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